This is a brief summary of paper for me to study and simply arrange it, Language Models are Unsupervised Multitask Learners (Radford et al.) I read and studied.
This paper extend GPT for model with sufficient capacity to converge.
That is, they implement training language model on a variety of domains with WebText, which is common crawling data.
Also They experiemtn languag model on natural language understanding tasks at with zero-shot setting.
They aslo used BPE as input representation.
Note(Abstract):
Natural language processing tasks, such as question answering, machine translation, reading comprehension, and summarization, are typically approached with supervised learning on taskspecific datasets. They demonstrate that language models begin to learn these tasks without any explicit supervision when trained on a new dataset of millions of webpages called WebText. When conditioned on a document plus questions, the answers generated by the language model reach 55 F1 on the CoQA dataset - matching or exceeding the performance of 3 out of 4 baseline systems without using the 127,000+ training examples. The capacity of the language model is essential to the success of zero-shot task transfer and increasing it improves performance in a log-linear fashion across tasks. Our largest model, GPT-2, is a 1.5B parameter Transformer that achieves state of the art results on 7 out of 8 tested language modeling datasets in a zero-shot setting but still underfits WebText. Samples from the model reflect these improvements and contain coherent paragraphs of text. These findings suggest a promising path towards building language processing systems which learn to perform tasks from their naturally occurring demonstrations.
Reference
- Paper
- How to use html for alert
- For your information