Lecture on Storage Systems

Storage Systems and OS Kernels

André Brinkmann

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft lg‘

How can we represent block devices in the kernel

and process requests?
 Representation of storage systems as block devices

— Data structures for block devices
— Generic procedures on block devices

* Request Processing inside block device drivers

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

Properties of Storage Systems

* Linux kernel has to be able to work on storage devices in a uniform
fashion

— Many operations do not depend on the properties of the underlying storage
system

— It is not necessary to implement every procedure for every devices

 Requirements to abstract from system specific properties
— Set of data structures, which include properties of the storage devices
— Generic functions on these data structures
— Interfaces to the kernel (e.g., virtual file system)
— Functions, which cover specific properties of the storage system

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

Block Devices and Drivers

* Every storage system is represented in the kernel as a block device

* All operations on the block device are handled by the corresponding block device
driver

* Block device driver is registered in the kernel by the function
register blkdev (unsigned int major, const char * name)

— Major 0 enables operating system to choose the major number itself
— No further parameters besides the major number and the name

— register blkdev became optional in Linux 2.6 and only allocates the
major number and an entry in /proc/dev

* Individual disk is represented by struct block device and struct
gendisk

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

block_device
(disk)

bd_contains

Data Structures

bd_contains

Gen_disk

block_device bd_disk

(partition)

bd_part

hd_struct

hd_struct

Slide based on http://book.opensourceproject.org.cn/

Request_queue

hd_struct hd_struct

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

Block Devices: /linux/fs.h

struct block device {

b

dev_t bd_dewv;

struct inode * bd_inode; /* will die */
int bd_openersh

struct semaphore bd_sem; /* oledNclose mutex */
struct semaphore bd_mount_sem; mount mutex */
struct list head bd_inodes;

void * bd_holder;

int bd_holders;

struct block device * bd_contains;

unsigned bd block size?

struct hd_struct * bd_part;

/* number of times partitions with i i opened.
unsigned bd_part_count

int bd_invalidated;

struct gendisk * bd_disk;

struct list head bd_list; *

/*
* Private data. You must have bd_claim
* to use this. NOTE: bd claim allows an
* the same device multiple times, the owner
* care to not mess up bd_private for that case.
*/

unsigned long bd private;

*/

/* not a kdev_t - it's a search key */

Data structure to describe block devices

Hash Key for the global management of block
devices (unsigned short); encodes major /
minor number

Representation of the devices as an Inode

bd_contains points to device, which contains
this partitions (if it is a partition ...)

Information about partition (start sector,
size, ...)

Pointer to gendisk structure

Generated at first access through

bdev _alloc inode ()

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

Generic Disks: /linux/genhd.h

struct gendisk {
int major; /* major number of driver */
int first _minor;
int minors;

/* maximum number of minors, =1 for

* disks that can't be partitioned. */
/* name of major driver */

/* [indexed by minor] */

char disk_ name [32];
struct hd_struct **par
int part uevent supress;
struct block_device operatio
struct request_gueue *queudN
void *private_data;
sector_t capacity;

Data structure to describe devices

int flags; ‘\\\\\ .
B sk = 2 i B T2 L A B 2 B
Toherdovfe- ~_ and partitions

struct device *driverfs_dev; ¢ Includes major number / minor interval

struct kobject kobj;)
* name of the device
struct timer rand state *random; o Dri fi the devi
int policy; rive operations on the aevice (open,

, , release, ...)
atomic_t sync_10;
unsigned long stamp;
int in_ flight; L

#ifdef CONFIG_SMP e Capacity in 512 byte sectors
struct disk_stats *dkstats;

* Pointer to request queue

#else

struct disk_stats dkstats;
#endif
bi

UNIVERSITAT PADERBORN 'L‘

Die Universitdt der Informationsgesellschaft

Block Device Operations: /linux/fs.h

struct block device operations {
int ({(*open) (struct inode *, struct file *);
int (*release) (struct i1node *, struct file *);
int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long):;
long (*unlocked ioctl) (struct file *, unsigned, unsigned long); <«—|OCTL without BKL

long (*compat_ioctl) (struct file *, unsigned, unsigpned long):;
int (*direct_access) (struct block _device *, sector_t, igned long *);
int (*media_changed) (struct gendisk *);

int (*revalidate disk) (struct gendisk *); 32-64 Bit conversion
int (*getgeo) (struct block device *, struct hd_geometry *);
struct module *owner;

}i

struct block device operations stores pointer to driver functions
* open(): Increments usage counter

release(): Decrements usage counter

* joctl(): IO-Control — Interface between driver and user space, locked by Big Kernel Lock
» direct_access(): Enables reference to data on storage system

* media_changed() —revalidate_disk(): supports removable media

* getgeo(): Returns geometry of the device

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

Request Queue: /linux/blkdev.h

struct request_queue

{

Request queue stores requests to block device

/* Together with queue_head for cacheline sharing */

struct list head queue_head; < * Pointer to a list with requests

iiiii‘éoiiﬁ“e“ iiiif,;?ii?e g * Pointer to elevator queue (includes Pointer to
/* the queue request freelist, one for reads and one for writes */ scheduler and ist functions)

struct request list ra; «__Pointer to request function for the device
i *back meEgs. o) i * Locks to secure access to data structures

M reets Amerce recussts £o) « Information about possible requests
e I — Maximum number (nr_requests)
e L T ~ Maximum size (set by root)

Secue frash_fn Micoue fyaen £ns — Maximum size (set by block device)
Eottiradone En. “Eoteire done ns. — Sektor size (multiple of 512 bytes)

Generated by

/* Dispatch queue sorting */

sector t end sector; . .

struct reguest *boundary rqs request queue t*blk init queue
(request fn proc *request, spinlock t
* .

spinlock_t _ _queue_lock; lOCk) !

spinlock_t *queue_lock;

or
blk gqueue make request (..,

/* queue settings */

unsigned long nr_requests; ax # #f requests */

unsigned int max_sectors; make request fn *func);

unsigned int max_hw_sectors - —

unsigned short nax_phys_segments; * Second function does not include optimization through
unsigned short max_hw_segments;

unsigned short hardsect_size; reqUGSt queue)

unsigned int max_segment _size;

unsigned long seg_boundary_mask;

struct blk_queue_tag *queue_tags;

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

Request Processing

* Block operations do not contain any point to functions, which allow the
processing of requests

* Request processing is performed in request () -ormake request()-
function

* Functions are paramaters during the generation of the request queue

— request () —function works on request queue and uses optimized ordering
of the scheduler

— make request () -function is used for RAM disks or logical volume
managers, which do not profit from request re-ordering

* Functions are core component of request processing = Optimization necessary

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

request () -function

 request () gets pointer to request queue as parameter

 Callto request () holds lock on request queue

— Operations on request queue are secured against unintended
concurrent changes

* Request Queue is accessed using the following helper functions

— elv _next request()
* Returns pointer to next request (or NULL).
* Request is kept in queue and marked as active

— blkdev dequeue request ():

« Removes request from request queue
— elv _requeue request():

* Re-enqueuing of a request
— end request():

* Callsblkdev dequeue request ()

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

request-structure

struct recquest {

struct list head queuelist; Request ContaInS

struct list_head donelist;

unsigned long Elags; /2 see REQ_ bits below */ 4 * Flags describing access properties (rw, barrier,

sector_t sector; /% next sector to submit */
unsigned long nr_sectors; /% no. of sectors left to submit * -
/* no. of sectors left to submit in the current segument */ ﬁle SyStem_access)

unsigned int current nr_sectors;

e Access location

sector_t hard sector; /% next sector to complete */
unsigned long hard nr_sectors; /* no. of sectors left to complete */

i no. oflsectors left to complete in the current segment */ (] Request as b|o Structu re
unsigned int hard_cur_s_
struct bio *bio; ° Gend|5k Of the deVlce

struct bio *biotail;

woid *elevator private; ° Comp|etIOn StrUCtU re
void *completion data;

e (Callback structure

unsigned short ioprio;

int rg_status; /% should g
struct gendisk *ro disk;
int errors;

unsigned long start time;

is into a few status bits */

int tag;
char *buffer;

int ref_count;
request_gqueue_t Fqg;
struct request_list *rl;

struct completion *waiting;
void *special;

unsigned int timeout;
int retries;

/ﬂ'

* completion callback. en
*/

rg end_io_fn *end_io;
void *end io_data;

/10_data should be folded in with waiting

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

request () —function |

static wvoid *
sbull_redquest (request_dqueue_t * ()
{
struct *req;
while (({req = elv_next_request (g)) '= NULL) {
struct sbull_dev *dev = regq->rq_disk->private_data;
if ('blk_fs_request (req)) {
printk (KERN _NOTICE "3kip non-fs requestin™);
end_recuest (req, 0);
continue;
}
sbull_ transfer (dev, reg->sector, reg->current nr_sectors,
req->buffer, rq data dir (req)):’
end_recuest (req, 1):

* Function (for a RAM disk) only accepts ordinary file system requests
* Data transferis implemented in sbull transfer ()
* Function always handles current segment of a request

UNIVERSITAT PADERBORN

Slide based on Corbet, Rubini, Kroah-Hartman: Linux Device Drivers Die Universitét der Informationsgesellschaft

d

request () —function I

static void
sbull_transfer (struct sbull_dev *dev, unsigned long sector,
unsigned long nsect, char *buffer, int write)

{
unsigned long offset = sector * KERNEL_SECTOR_SIZE:?
unsigned long nbytes = nsect * KERNEL_SECTOR_SIZE:
if ((offset + nbytes) > dev->size) {
printk (KERN_NOTICE "Beyond-end write (%ld %ld)\n", offset, nbytes)’
return;
}
if (write)
nencpy (dev->data + offset, buffey, nbytes):
else
nencpy (bu r, dev->data + offset) nbytes);
}

« Safety check, whether data_is accessed over device boundaries
« Data transfer itself is a simple memcpy operation

. . . . _ UNIVERSITAT PADERBORN 'L‘
Slide based on Corbet, Rubini, Kroah-Hartman: Linux Device Drivers (LA

Die Universitdt der Informationsgesellschaft

b1 o-structure

struct bio {

sector_t bi_sector; , struct biois core function of request
struct bio *bi_next; L_cqueue link */

struct block_device *hi_hdev; proceSS|ng and Contalns

unsigned long bi_flags; tus, command, et

unsigned long bi_rw; /% botton D READ /WRITE,

e Sector for the next request

* top bits priorT

* Corresponding block device

unsigned short bi_vent; /% how many bio_vec's
unsigned short bi_idx; / L _index into bvl_wec *

* Access Type

/% Number of segments in this BIO after
* physical address coalescing is performed.
*/

unsigmed short bi_phys_seguents; d Number Of requested sectors

/% Number of segments after physical and DMA remapping
* hardware coalescing is performed.

e Caninclude many pages

* Pointer to array with set of pages for this

*/

unsigned short bi_hw_segments; daccess

unsigned int bi_size: residual I/0 count */ ° Pointer to endio()_function
/*

e Private information and destructire

* To keep track of the max hw size, we account for the
* gizes of the first and last wirtually mergeable segmen
* in this bio

*/
unsigned int bi_hw_front_size:
unsigned int bi_hw back_size;
unsigned int bi_max_vecs; _Vecs we hold */
struct bio_wec *bi_io_vec; ec list */
bio_end_io_t *bi_end_io;
atomic_t bi_cnt;
wvoid *bi_private;
bio_destructor_t *bi_destructor; /* destructor */

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

Relationship between bios

struct bio

bi next

bi io vec

A 4

struct bio

bi next
bi io vec

A 4

struct bio vec

bv_page

struct bio vec

A 4

bv page

struct bio vec

A\ 4

bv page

struct bio vec

\ 4

bv page

Slide based on Corbet, Rubini, Kroah-Hartman: Linux Device Drivers

Y

Memory Map

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

request () -function and bios |

struct request

vy
Y

queuelist

struct bio

\ 4

bi next
bi io vec

struct request

A\ A 4

vy

queuelist
bio
cbio
buffer

struct bio

\A 4

bi next
bi io vec

struct request

> queuelist Memory Map

UNIVERSITAT PADERBORN 'L‘
(LN

Slide based on Corbet, Rubini, Kroah-Hartman: Linux Device Drivers Die Universitét der Informationsgesellschaft

request () -function and bios I

struct request

> queuelist struct bio

bi next
bi io vec

struct request

P queuelist
bio

cbio
buffer b struct bio

bi next
bi io vec

struct request

%> queuelist Memory Map

* Figure skips biovec-level
e cbio pointsto first bio, which has not been completely handled

* Additional helper functions:
— rq for each bio(): Handles each bio for a request
— bio for each segment () : runsthrough all pending pieces of a bio
— end that request first () : Signalsthe transfer of a certain amount of data and
returns a value indicating whether the request as a whole was complete

— end that request last () : Calls post-processing
UNIVERSITAT PADERBORN'A‘

Slide based on Corbet, Rubini, Kroah-Hartman: Linux Device Drivers Die Universitét der Informationsgesellschaft

request () —function Il

static woid
sbull_full redquest (request_gueue_t * o)
{
struct recquest *redq;
int sectors_xferred;
struct sbull_dev *dev = g->queuedata;
while ((req = elv_next_request (g)) != NULL) {
if ('blk_fs_redquest (req)) {
printk (KERN _NOTICE "3kip non-fs recquestin™);
end_recuest (regq, 0);
continue;

}

sectors_xferred = sbull _xfer_ request (dev, req):

if ('end_that_ recquest_first (req, 1, sectors_xferred)) {
blkdev_decqueue_redquest (redq):
end_that_recquest_last (req);

* More complex function handling request processing for a RAM disk
e Can process multiple segments for each access
— Stores number of segments in sectors_xferred

— Calls end_that_request_first

— Dequeuing of the request after all data is processed
UNIVERSITAT PADERBORN 'L‘
L

Slide based on Corbet, Rubini, Kroah-Hartman: Linux Device Drivers Die Universitét der Informationsgesellschaft

request () —function IV

static int
sbull_xfer_ recquest (struct sbull_dev *dev, struct request *regq)

{
struct bio *bio;
int nsect = 0;
rgq_for_each _bio (bio, req) {
sbull_xfer bio (dev, bio):
nsect += bio->bi_size / KERNEL_SECTOR_SIZE:;
}
return nsect;
}

* Functions handles each bio seperatley
* Updates transferred data after each round

UNIVERSITAT PADERBORN)

Slide based on Corbet, Rubini, Kroah-Hartman: Linux Device Drivers Die Universitit der Informationsgesellschaft A\

request () —function V

static int
sbull_xfer_bio (struct sbull_dev *dev, struct bio *bio)

{
int i;
struct bio_wvec *bvec;
sector_t sector = bio->bi_sector;
/* Do each segment independently. %/
bio_for_each_segment (bvec, bio, 1) {
char *buffer = _ bio_kmap_atomic (bio, i, KM _USEROD):
sbull_transfer (dev, sector, bio_cur_sectors (bio),
buffer, bio_data dir (bio) = = WRITE):
sector += bio_cur_sectors (bio);
__bio_kunmap_ atomic (bio, KM _USERO):;
}
return 0; /% Always "succeed” */
}

* Processonebio
— Each segmentis handled by bio for each segment ()
— Maps segments into address space
— Call sbull transfer () foreach sector

UNIVERSITAT PADERBORN 'L‘
(LN

Slide based on Corbet, Rubini, Kroah-Hartman: Linux Device Drivers Die Universitét der Informationsgesellschaft

/ APl Changes

* Linux 2.6 APl is far from being static

 end that request first() and
end that request last() have been used for along
time, but usage has been confusing for driver authors

* Both functions have been replaced by single call to
blk end request(struct request *rq, int
error, int nr bytes);

 Many standard housekeeping functions are automatically
performed inside blk end request()

e Additionally, driver can register to callback function

Slide based on Corbet: A new block request completion API, http:/lwn.net/Articles/266914 UNIVERSITAT PADERBORN 'g‘

Die Universitdt der Informationsgesellschaft

Request Processing without Request Queue

* Request queues minimize head movements of hard disks

— Virtual devices, SSDs, or RAM disks cannot optimize head
movements / do not have head

* Request queue can be initialized using
blk queue make request (.., make request fn

*func) ;

* Request queue still holds information about requests, but
requests are submitted to func without reordering

static int sbull_make_redquest(redquest_dqueue_t *g, struct bio *bio)
{

struct sbull_dev *dev = g->dqueuedata;

int status;

status = sbull xfer bio(dev, bio):

bio_endio(bio, bio->bi_size, status):;

return 0;

UNIVERSITAT PADERBORN 'L‘
(LN

Slide based on Corbet, Rubini, Kroah-Hartman: Linux Device Drivers Die Universitét der Informationsgesellschaft

