
The Journey of an I/O
request through the Block
Layer

Suresh Jayaraman
Linux Kernel Engineer

SUSE Labs

sjayaraman@suse.com

mailto:sjayaraman@suse.com

2

Introduction

• Motivation

• Scope
‒ Common cases

‒ More emphasis on the Block layer

• Why should you listen to this talk?
‒ Better understanding of I/O request handling

‒ Help analyze I/O related problems

‒ Just curious about finer details?

3

Linux I/O Path

4

Application I/O interface

• Read or write request
‒ Stream I/O: fread()/fwrite()/fgets/fputs etc.

‒ System calls: read() / write()

• Request to a file system or a device file

• For e.g.

 read(fd, buf, count);

5

System call handling (simplified)

• User mode process passes system call number

• CPU switches to kernel mode

• Finds the corresponding service routine via the
system call dispatch table and invokes it.

Relevant concepts

7

Page cache

• In-memory store of recently accessed data

• Quicker subsequent access

• Page sized chunks (4k typically)

• Dynamic in size

• Auto-pruned (LRU) when memory is scarce

8

Writeback and Readahead

• Writeback
‒ Deferred writes

‒ Data copied to buffer, marked as dirty and the write
returns. The dirty buffer committed to disk later

‒ Writeback triggers

‒ When page cache gets too full

‒ dirty buffer ages

‒ Per backing device flusher threads

• Readahead
‒ Adjacent pages read before they are actually requested

‒ Enhances disk performance and system responsiveness
(only in case of sequential access)

9

I/O request handling at the File system
Layer (1)

10

I/O request handling at the File system
Layer (2)

• Storage unit of data is blocks

• Determine the physical location of the data
‒ File block number Vs Logical block number

‒ Get file block number from file offset (offset/block_size)

‒ File block number -> logical block number

• Allocate and prepare info needed by lower
components (bio)

• Use generic block layer to submit requests

Block LayerBlock Layer

12

Block layer
key concepts

• bio structure

• Request queues

• Partition remapping

• Device plugging and unplugging

• Merging and coalescing

• Elevator interface

• I/O schedulers

13

bio structure

• Represents in-flight block
I/O operations

• Scatter-gather I/O
‒ I/O vectors (bio_vec)

• Has a pointer to block
device

• ->end_io() callback to be
used by device driver

• 1MB of data in a single
bio (assuming 4k page
size)

14

Request queue

• Per device

• list of pending I/O requests for the device

• Each request has one or more bio's

• Knows which I/O scheduler handles its request

• Device driver specific ->request_fn

• Methods for creating new requests and unplugging
the device etc.

15

Relationship between bio, request and
request_queue

16

Partition remapping

• Adjusts sector so that sector number is relative to
the whole disk

• Sector 'n' of a partition starting at sector 'm' mapped
to sector m + n of the block device.

 For e.g. read sector 256 of /dev/sda3

• Ensures correct area is read or written

• Sets block device to block device descriptor of
whole disk

• Better scheduling decisions

17

Plugging and unplugging

• Holds requests, allows build up of requests

• Why plugging?

• Implicit Vs Explicit block device plugging
‒ How plugging happens?

‒ Unplug triggers

‒ Implicit: unplug_thresh, unplug timer elapses (usually 3msec)

‒ Explicit: process finished submitting I/O

18

Merging and coalescing

New request

19

Elevator interface

• Abstracts IO schedulers

• Provides merge searching and sorting functions

• Maintains a hash table of requests indexed by end-
sector number

‒ Back merge opportunities with constant time lookup

• No front merging
‒ Up to the IO scheduler

• “One-hit” merge cache
‒ stores the last request involved in a merge.

‒ Checks for both front and back-merge possibilities

20

I/O schedulers

• Algorithms for scheduling and re-ordering I/O
operations

‒ Overall throughput Vs starvation

• Registered with the elevator interface

• Implements scheduling policy via a set of methods
(elevator_ops)

• Uses additional queues to classify and sort requests

• Different I/O schedulers: noop, cfq, deadline

• Scheduler can be switched during runtime

/sys/block/<device>/queue/scheduler

21

CFQ I/O Scheduler (default)

• The default scheduler

• Per-process sorted queues for sync requests

• Queues for async requests (1 per I/O priority)

• Round robin - picks a queue, lets it send requests
for time-slice, picks another queue...

• Performs some anticipation

22

I/O request handling at the generic
block layer

• Gets request from the file system <bio, rw>

• Ensures bio doesn't extend beyond the device

• Gets the request queue of the block device

• Remaps the request if required

• If plugged, attempt merge to plug list
‒ See if the request can be safely merged

‒ Different data direction?

‒ Same device?

‒ Call elevator's allow_merge_fn

23

I/O request handling at the Elevator
layer

• Find merge opportunities in One-hit cache

• Find a potential merge and attempt merge

• If merge unsuccessful
‒ Call I/O scheduler specific merge_fn

24

I/O request handling at the I/O
scheduler

• Elevator layer return merge possibilities or lack of

• Check if the request is merge-able

• I/O scheduler specific ->merged_fn method gets
invoked

• If not merge-able, allocate a new request instance,
fill it with data from bio

• Adds request to plug list if device is plugged

• If not, adds request to the request list

• Kicks the device queue by invoking the ->request_fn
for that device queue

25

Handling at the device driver
(simplified)

• Device driver specific ->request_fn

• Hardware-specific task

• Typical sequence
‒ Reads requests sequentially from the request queue

‒ Starts data transfer

‒ Sends READ/WRITE commands to disk controller

‒ The disk controller raises an interrupt to notify the device driver

‒ Waits for IO completion, invokes end_io callback

‒ Block layer does the cleanup or wakes up waiting process

26

Summary

• We explored different phases an I/O request goes
though

• How the request gets handled in different layers

• Learned some concepts that are needed to
understand block subsystem

• But... The Devil is actually in the “code” :)

Q & A

Thank you.

28

29

Different IO schedulers

• Noop
‒ Performs merging, but no sorting

‒ Truly random access, Intelligent devices

‒ e.g. flash, ramdisk etc.

• Deadline
‒ assigns to each request a deadline

‒ 500 ms for reads, 5s for writes?

‒ Three queues: Sorted queue, Read FIFO & Write FIFO

‒ Good for server workloads

30

How different layers manage disk data
(Units)

• I/O scheduler and block device drivers => sectors

• VFS and mapping layer and filesystems => blocks

• Block device drivers => segments

• Page cache/Disk cache => page
‒ As controllers of hardware block devices transfer data in chunks of sectors

‒ Sector: Smallest addressable unit, defined by the device (power of 2, usually 512 bytes)

‒ Page: Fixed-length block of main memory that is contiguous in both physical and virtual

memory addressing. Smallest unit of data for memory allocation performed by the OS.

‒ Block: Smallest addressable unit, defined by the OS (power of 2, at least sector size, at

most page size)

‒ Buffer: Represents a disk block in memory

‒ Buffer head: struct that describes a buffer

MISSION-CRITICAL
INTEROPERABILITY

INDUSTRY
SUPPORTPERFECT GUEST

31

Why SUSE Linux Enterprise Server?
Alliance Solutions: Server

The most interoperable Linux
for powering physical, virtual,
and cloud mission-critical
workloads

Optimized to deliver superior
performance as a guest OS on
leading cloud-ready
hypervisors

Broad industry support, with the
most certified ISV applications
and the most hardware
certifications.

32

Why SUSE?
Engineering Excellence

MICROSOFT RECOMMENDED
The ONLY Linux recommended by

Microsoft is SUSE Linux Enterprise
Server

SAP

Instances of SAP applications running on
Linux run on SUSE Linux Enterprise
Server

70%+

MAINFRAMES

Instances of Linux running on
mainframes run on SUSE Linux
Enterprise Server

80%+
BROAD PLATFORM
COVERAGE

ARCHITECTURES
SUSE Linux Enterprise Server

runs on five architectures, from
x86 to mainframe

5

HIGH PERFORMANCE
COMPUTING

50%
+HPC on Linux uses
SUSE Linux Enterprise
Server

UNIFIED SUPPORT

Available for SUSE Linux
Enterprise Server and Red
Hat Linux

Where employees consistently rank
among contributors to Linux kernel.
SUSE employs 400 Linux developers.

TOP 3
KERNEL DEVELOPMENT

of LINUX
ENGINEERING
EXCELLENCE

20+YEARS

SLES was the first enterprise
Linux distribution

33

Why SUSE?
Broad Ecosystem

CERTIFIED HARDWARE

Hardware systems certified and
supported on SUSE Linux Enterprise—
more than any other Linux distribution

13500+

CERTIFIED APPLICATIONS

ISV certifications—more than
twice as many as Red Hat

8500
+

CERTIFIED PRODUCTS

SUSE Linux Enterprise products
certified

2000
+

SOLUTION PROVIDERS
& SYSTEM INTEGRATORS

Value-added dealers
and resellers3200

TECHNOLOGY PARTNERS

Independent
software and
hardware vendors

1300

TRAINING PARTNERS

600

PARTNER
ECOSYSTEM

5000+
MEMBERS

INTEROPERABILITY

Part of
company-wide
mission

Corporate Headquarters
Maxfeldstrasse 5
90409 Nuremberg
Germany

+49 911 740 53 0 (Worldwide)
+www.suse.com

Join us on:
www.opensuse.org

34

http://www.suse.com/
http://www.opensuse.org/

This document could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein. These changes may be
incorporated in new editions of this document. SUSE may make improvements in
or changes to the software described in this document at any time.

Copyright © 2011 Novell, Inc. All rights reserved.

All SUSE marks referenced in this presentation are trademarks or registered trademarks of
Novell, Inc. in the United States. All third-party trademarks are the property of their respective
owners.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Why SUSE Linux Enterprise Server?
	Slide 32
	Slide 33
	Slide 34
	Slide 35

