The Story of RocksDB

Embedded Key-Value Store for Flash and RAM

Dhruba Borthakur y‘
Database Engineering -4 RocksDB

.ﬂ Ohruba Borthaker Update Status 1 #) Add Photos/Video

Eax Profile i Deiie s 2ok
What's on your mind? B9 Weiyan Wang's birthday is today
SORT ~ Spoasored § Create
o= i 5 Ag. 1 M h
. . ameet Agarwal and Manis
..{-.' Messages 18 Kal Liu n Modi like Mercury Trip
(@) everss Ninja turtle completed! — with Wenjing Yu at Facebook HQ.
(3 Photos "\ M_ﬂ(urv Trip
s Like
4 Browse
Rocksdb Join Orbitz Rewards

Pages Feed 20+ It's on us! Cet a pro

f‘ code for 15% off hog
when you join the N
Orbitz Rewards

Uke Pages 20+

. Y,

Create Ad

@9 RocksDE Internal 1
Save at Lowe's with Amex
eyl Rocksdb Users Cr 3 Mome Improvement
1] Database Engineering I!:l!!la on your to do list?
NEVER ST0 Spend $50 and get
9 Multifeed on rock 1 “'SPSRdVING $10 back Lx at
owe's. See how
tn Rocksdb for clicks 10
Data @ Scale Conl 1 > Exclusive Customer Offer
%7 Everstore 3 .
. ATAT wireless
4 Data infrastructur s £ Rongron g, Dheera) Kumar Singh, Volodymyr Krestiannykow > CUMOMErs save
& S!on merocksdb 2 and 8 oth Wke this. v moreiCet U-verse T
T T looks 4l " " hard (3 - Internet & Home
J Core Data Internal A E Michel Tu it looks like you both are working hard (2 Phone-$74/mo for

A Client-Server Architecture with disks

Network roundtrip = Database

Application Server 50 micro sec Server

Disk access =
10 milli seconds

=8

Locally attached Disks

Client-Server Architecture with fast storage

L
£

Network roundtrip = Database
[Application Server]]] 50 micro sec]]]

100 100
microsecs nanosecs

sso | (Ram)

Latency dominated by network

Architecture of an Embedded Database

N

o\
App“caﬂon Networkrc Itrip= A5 tabase
50 mic {4 erver

100 100
microsecs nanosecs

sso | (Ram)

Storage attached directly to application servers

Any pre-existing embedded databases?

Open FB
Source Proprietary

Any pre-existing embedded databases?

2. SQLite FB
e

Source

Any pre-existing embedded databases?

1. High Performant
Open 2. No transaction log
Source 3. Fixed size keys

FB

Proprietary

Comparison of open source databases

Random Reads
LevelDB 129,000 ops/sec

Kyoto TreeDB 151,000 ops/sec
SQLite3 134,000 ops/sec

Random Writes

LevelDB 164,000 ops/sec [T
Kyoto TreeDB 88,500 ops/sec
SQLite3 §,860 ops/sec

Log Structured Merge Architecture

Scan Request from Appllcatmn Wnte Request from Application

Perlodlc
Co mpactlon Read Write data
in RAM

Read Only datain RAM on 2
disk Transaction log

Leveldb has low write rates

Facebook Application 1:
» Write rate 2 MB/sec only per machine
« Only one cpu was used

We developed multithreaded compaction

10x ..|_ 100%

improvementon
write rate

of cpus are
inuse

Leveldb has stalls

Facebook Application 2:
» Pgg latencies were tens of seconds
» Single-threaded flush, conflict with compaction

We implemented thread aware compaction

Pgg reduced to less
than a second

Dedicated thread(s)

to flush memtable Pipelined memtables

Leveldb has high write amplification

« Facebook Application 2:
» Level Style Compaction
» Write amplification of 70 very high

Level-o 5 bytes
Level-a DR —— 11 bytes —

Level-2 10 bytes 10 bytes 10 bytes
Stage1 Stage 2 Stage 3

Two compactions by LevelDB Style Compaction

Our solution: lower write amplification

« Facebook Application 2:

» We implemented Universal
Style Compaction
» Start from newest file,

include next file in
candidate set if

« Candidate set size >=size
of next file

Level-o

Level-a

Level-2

sbytes
Gbytes | ———
10 bytes

Stage1 Stage 2
Single compaction by Universal Style Compaction

10 bytes

Write amplification reduced to <10

Leveldb has high read amplification

« Secondary Index Service:

« Leveldb does not use blooms for scans

« We implemented prefix scans
» Range scans within same key prefix
«» Blooms created for prefix
» Reduces read amplification

Leveldb: read modify write = 2X 10s

« Counter increments
» Get value, value++, Put value
» Leveldb uses 2X IOPS

« We implemented MergeRecord
» Put “++” operation in MergeRecord

» Background compaction merges all MergeRecords
» Uses only 1X IOPS

Leveldb has a Rigid Design

« LevelDB Design
« Cannot tune system, fixed file sizes
« We wanted a pluggable architecture
» Pluggable compaction filter, e.g. TimeToLive

» Pluggable memtable/sstable for RAM/Flash
» Pluggable Compaction Algorithm

The Changes we did to LevelDB

Inherited from LevelDB RocksDB

» Log Structured Merge DB « 10X higher write rate
« Gets/Puts/Scans of keys Fewer stalls
» Forward and Reverse Iteration « 7x lower write amplification
« Blooms for range scans
« Ability to avoid read-modify-write
« Optimizations for flash or RAM
« And many more...

RocksDB is born!

» Key-Value persistent store
« Embedded

« Optimized for fast storage
«Server workloads

j RocksDB

What is it not?

« Not distributed
« No failover

« Not highly-available,
if machine dies you
lose your data

RocksDB Architecture

Get or Scan Request from Application Write Request from Application

=] |

Pluggable
Compaction

Pluggable
Memtable

format in RAM %

Pluggable data format in -
RAM, Flash or disk Transaction log

Futures

«Scale linearly with number of cpus
» 32, 64 or higher core machines
» ARM processors

«Scale linearly with storage iops

» Striped flash cards

*» RAM & NVRAM storage

Come Hack with us

« RocksDB is Open Sourced %

« http://rocksdb.org -l RocksDB

« Help us HACK RocksDB HE
p

